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L I F E T I M E  O F  A S Y M M E T R I C A L L Y  P U L S A T I N G  B U B B L E  

O. V. Voinov UDC 541.24:532.5 

This article examines the problem of the time until the rupture of the surface of a gas bubble. The bubble initially 

undergoes spherically symmetric pulsations in a fluid which is quiescent at inf'mity. We construct a model of the rupture of 

the smooth surface of the pulsating bubble due to the growth of initial perturbations caused by thermal fluctuations. The source 

of the perturbations is of the minimum possible amplitude. It is shown that the thermal fluctuations are sufficient for rapid 

rupture of the bubble surface at moderate as well as high pressures. The dependence of the number of cycles to rupture on the 

pressure drop is determined, examples are presented for gas bubbles, and an estimate is made for vapor bubbles. 

1. Dynamics of Perturbations Due to Thermal Fluctuations. The deviation of the radius r of the surface of a bubble 

from the radius of a sphere R'(t) can be represented by a series in associated Legendre functions with random coefficients 

anm(t), bnm(t): 

= r -  R' = ~ ~ (a, P ~ cos m T + b P ~ sin m~o). (1.1) 

l 

n ~ 0  m ~ 0  

Since the amplitudes of two different waves are statistically independent and since anm 2 = bnm2 , we obtain the 

following from Eq. (I. 1) for the mean square deviation of the surface 

(1.2) 

We assume that the mean square anaplimde of the wave at the initial moment t = 0 coincides with the corresponding 

equilibrium value (anm~)s, due to thermal fluctuations: 

t 0, a "5-" = --T" (1.3) 
= . , .  ( a . , . ) s .  

The thermal fluctuations may be the main source of initial perturbations in the short-wave region - -  especially for bubbles in 

two-phase media. Using the physical concept (see [1], for example) of equilibrium thermal fluctuations in distributed systems 

- -  which was first applied to a capillary wave on the surface of a liquid in [2] - -  we write the mean potential energy of an 

individual capillary wave U in the equilibrium state as 

U = (I/2)k'T' 

(k' is the Boltzmann constant; T'  is absolute temperature). Considering that U is proportional to the square of the amplitude 

of the perturbation of the bubble surface, we obtain the following for a wave with the amplitude anm 

.,'tn (n + m)! ~ I 
a 'y(m)  2 (n - m)! (a'~)s = -2 k 'T ' ,  (1.4) 

n : :~  1 ; ) , =  2, m = 0 ; ~ =  l , m > 0 .  

Allowing for the fact that the law of change in amplitude is independent of m [3, 4], it follows from (1.3) and (1.4) that for 
all t >_. 0 
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(n - m)! ~ .o  
a',,,, = 2 (n + m)! " (1.5) 

By virtue of the summation theorem for associated Legendre functions 

(p)2 + 2 2 (n - ,,7)! (~ )2  = 1 
,~-i (n + rn)! 

In accordance with the homogeneity of the problem with respect to the angle 0, we obtain the following from (1.2-1.5) for short 

waves on the bubble 

~ 2 a2 k'T' = ~ (~)~-  z~,,-'---~ (1.6) 

The logarithmic divergence of sum (1.6) at n ~ ~ is unimportant, since minimum wavelength is restricted to the molecular 

scale. 
The dependence of  %2 on time is conveniently represented in discrete form for two points of the cycle t = (1/2)T, 

T - -  t. - -  6 (T is the period of pulsation). Asymptotic solution (1.5) [4] is valid when 6 is small. We assign to each point a 

half-cycle number N in sequential order. Thus, in accordance with (1.3-1.5), we have the following for the indicated points 

[4] 
- -  -"7" a 2,,,,, = (aX)  s expF(N) ( - q ( O ) / q ( R ) ) t / 2 / R  3, 

(1.7) 
F =  ~ t ~ T [ N -  0l  + 4 H ( N -  I N -  Ol), 2N = 1,2 .. . . .  

q = - R  / R  + crn2/R 3, exp(ulT ) = 2 exp(2H)cos(2v~'nlo), 
t I 

1 o = f v ~ q d t ,  q(t.) = q ( r -  t.) = 0 
0 

([ ] denotes the integral part of the number). To calculate the sum (1.6) determined by (1.7). we need to evaluate the behavior 

of H in the neighborhood of the index n that ensures maxH. The below equation is valid at point maxH 

d2H Ko r/2 
an2 -2t'n-VT, H = "r K o, K 0 = f ~ - q d t .  (1.8) 

t ,  

In accordance with universal relation (4.5) from [4], the value of the constant c should be approximately the same for any 

polytropy indices k and pressure ratios e. In fact, when e = 0, c = 0.546, 0.54, and 0.536 for k = 1.1, 1.4, and 1.6, i.e. 

the calculation confirms the existence of a universal relation/~(r 0. The approximation of H in the neighborhood of maxH by 
a parabola 

~I = H / m a x H  = 1 - c ( n / n  o -  1) 2 , c = 0,54 
(1.9) 

satisfactorily describes H, as can be seen from Fig. 1 [lines 1 and 2 correspond to/-)(h) [4] and (1.9)]. Using (1.9) and 

replacing sum (1.6) by an integral for n > >  1, we can use (1.7) to obtain 

2 (q(O) lWdn 
= k'T' 4~,e w i (c~ z~'e-w'("/%-'' 

2ttR3 1 ~ -q(tN) )1 n (1.10) 

w =  4NH,~ ,  N t = [N - 01, 2N = 1 ,2  . . . .  

It is difficult to calculate (1.10) analytically for an arbitrary unlimited number of  cycles N 1. However, such a 

calculation can be performed for a small number of  cycles N I - -  which is of particular interest. We will calculate the integral 

(1.10) on the basis of  two asymptotic methods. First, we formally have I 0 ~ ~ .  We then pass to the limit Wc --- oo.  Such an 

approach has been substantiated for short waves with a large exponent (n > >  1) when the second asymptote does not disturb 
the first asymptote. The below condition validating the given approach follows from this 

W c ( A n / n o )  2 ,*: I, l oAn /v~o  = n:. (1.11) 
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Fig. 1 

The first formula of (1.11) stipulates that the exponent under the integral in (1.10) undergo a small change with a 

change in the wave exponent by a small amount (An < < no). This corresponds locally to a period of variation ] cos(2~"~)  I , 

as reflected by Eq. (1.11). Using estimates that can be obtained from the formulas [3, 4] 

c max H < 0,25 v'%'0, I 0 > n-~'-, 

we find that (1.11) imposes the following limitation on the number of cycles 

N, << r (1.12) 

It should be noted that N 1 is the number of cycles preceding the current cycle. Thus, N = N 1 + 1 for the second point of the 

cycle and N = N 1 + 1/2 for the first point. Since N 1 -- 0, there are no limitations for the first cycle N = 1. With condition 

(1.12), we can replace the contribution of cos under the integral (I. I0) by its mean value and introduce the coefficient 

e ~'Nz (4N'COSZ~'(2C'h'-Io) ) 4N' ? = = n . ,  c~ ~od~o, (1.13) 
0 

e~'N1 = 2, 6, 20 . . . . .  u/ = 0,69; 0,9; 1; ... 

Along with the above formulas, we also introduce the relation 

-3  1/2 R-S( - -q ( tN) )  1/2 >1 R,,  ( - q ( T / 2 ) )  , (1.14) 

in which we have an equality for the first (or mean) point of the cycle and an inequality of the same order of magnitude for 

the second point. The inequality sign > is important for obtaining a correct lower bound for-~2. Passing in (1. I0) to the limit 

I 0 --, co and then Wc --, oo and using (1.13-1.14), we find that 

- 2 ~ c a '  ~ - q ( T / 2 ) )  R ~ v ' W  " (1.15) 

The formula for the mean square deviation of the surface (1.15) is valid for a slightly disturbed surface, while the 

characteristic deviation of the surface x/~"is much smaller than the wavelength associated with maximum growth of the 

disturbance A. When these quantities are of the same order of magnitude, there is a transition from a linear growth stage to 

a nonlinear stage. For an initially smooth bubble surface, the rupture condition corresponding to the end of the linear stage of 
growth can be taken in the form: 

, q ~  1 2.~ 
= z A ,  A = - -  R ' ,  R '  = R m R '  o. (1.16) 

n o 

To within a factor on the order of two, the form of rupture condition (1.16) is unimportant for calculations of bubble lifetime 

(time to rupture), since the number of pulsations corresponding to rupture N depends logarithmically on this factor. 

The number of  cycles to rupture N is found from Eqs. (1.15-1.16) with allowance for the formulas for n 0, K o, Hma x 

(4.2) and (5.1) [4], Eqs. (1.7), (1.9), (1.10), and (1.13), and the values of k ' ,  absolute temperature T ' ,  surface tension a ' ,  
initial radius R o' and pressure P0, the pressure gradient l/e, and the polytropy index k. 

2. Duration of  Bubble Pulsations to Rupture of the Surface. Formulas (1.10), (1.15) for the square of the deviation 

of radius are valid for discrete values - -  an integral number 2N of half-lengths of the interval of  exponential growth. As 

far as representation of  the results is concerned, it is most convenient to approximately generalize the formulas to a contin- 

uous number of  cycles and in so doing qualitatively account for the possibility of rupture at an arbitrary point of the interval. 
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Fig. 2 Fig. 3 

Figure 2 shows results of calculations performed with (1.15-1.16) to establish the dependence of the number of cycles to rupture 

N on e. The data is shown for different k and R o' with a '  = 0.072 N/m (corresponding to water) and P0 = 0.1 MPa. Viscosity 

was not considered in constructing the graphs in order to simplify representation of the data. The difference in the curves due 

to viscosity cannot be any more than 25% of the indicated values in the case of pure water (without substances added) at room 

temperature. Lines 4 and 5 correspond to k = 1.66 (helium) and k = 1.31 (methane or carbon dioxide) at R 0' = 0.2 cm. It 

is important that the number of pulsations to rupture is not large. When e = 0.1, one cycle of pulsation is sufficient for 

extremely small initial perturbations caused by thermal fluctuations to grow to finite dimensions. This is half of the rupturing 

number of cycles estimated in [3]. It is evident from Fig. 2 that an increase in k from 1.4 to 1.66 affects N in roughly the same 

way as a decrease in R o'  from 0.2 to 0.1 cm. Lines 1-3 are given for R 0, = 0.05. 0.1, and 0.2 cm when k = 1.4 (air or 

hydrogen). 

It is also interesting to evaluate the time to rupture the surface of a vapor bubble by examining a similar gas bubble 

as an approximation. This approach is valid if the Ftorschuetz--Chao number [5] is small. The difference in the rates of phase 

transformation at the interface for gas bubbles and vapor bubbles can be characterized by a parameter analogous to the 

Florschuetz--Chao parameter [5]: 

o' p,:[ar' 

Here, AT'  is the change in the temperature of the surface along the saturation curve: c t. and K t are the heat capacity and 

diffusivity of the fluid; I is the heat of phase transformation; pg is the density of the gas. While @0' < ! at the initial moment 

of time when radius is large (R' - Ro'), at R o' ~ 0 @, ~ 0 due to the decrease in r - R 5/2 and 1/p~ - R 3. In this case, the 

bubbles will be close to gas bubbles when they collapse. Condensation will be negligible for small radii (R - Rm), since 

@' < < 1. Thus, when R '  < < R' o, the vapor bubbles will be equivalent to gas bubbles in terms of the dynamics of the 

boundary. However,  by virtue of the reduced mass of gas inside the bubble relative to the initial amount (a reduction by a 

factor of approximately 1 - @'), the actual values of effective initial gas pressure are markedly lower than Po- The effective 

initial temperature also undergoes a change. The effective pressure gradient 1/e is considerably greater than the ratio P=/Po. 

Thus, calculations performed using the gas-bubble model with e = p0/p= should provide an upper bound for the number of 

cycles to rupture - -  which is of  definite interest. Figure 3 shows results of calculations of the number of cycles to the rupture 

of a gas bubble having parameters similar to vapor bubbles in water (k = 1.32) when R 0' = 0.05, 0.1, and 0.2 cm (curves 

1-3). Line 4 shows the variant R O' = 0.05 cm, a '  = 0.056 N/m, while line 5 shows the estimate for f reon- l l3  (k = 1.08, 

a '  = 0.015 N/m, T c = 47.6~ P0 = 0.1 MPa). No calculation was performed for ~ < 0.3 due to the proximity of the critical 
point of freon, while the calculations for the vapor bubbles were ended at r = 0.15. 

In the calculations performed for bubbles in water, we considered the change in surface tension with pressure in the 

bubble a '(p) along the saturation curve (lines 1-3 in Fig. 3). This was done using welt-known tabulated data on a '(p).  We took 

the mean pressure within the interval of exponential wave growth for the value of p. It is evident from Fig. 3 that changes in 

surface tension can have a significant effect on rupture. At e = 0.15, the difference from the case a '  = const reaches a factor 

of 1.5. The number of cycles to rupture is appreciably greater for the vapor bubbles than for freon, as indicated by the 
calculations performed using the gas bubble model. 

In conclusion, we should emphasize the importance of allowing for fluid viscosity in the general case. Fluid viscosity 

can be accounted for by means of the formulas presented in [4]. To illustrate the importance of this, we note that a fivefold 

increase in the viscosity of  water due to the addition of glycerin doubles the number of cycles to rupture compared to Fig. 2. 

414 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

M. L. Levin and S. M. Rytov, Theory of Equilibrium Fluctuations in Electrodynamics [in Russian], Nauka, Moscow 

(1967). 
L. I. Mandel'shtam, Complete Collected Works, Vol. 1, Izd. An SSSR, Moscow (1948). 

O. V. Voinov and V. V. Perepelkin, "Stability of the surface of a gas bubble pulsating in a liquid," Prikl. Mekh. 

Tekh. Fiz., No. 3 (1989). 
O. V. Voinov, "Dynamics of capillary waves on a bubble with nonlinear pulsations in a low-viscosity fluid," Prikl. 
Mekh. Tekh. Fiz., No. 3 (1994). 

L. W. Florschuetz and B. T. Chao, "On the mechanics of vapor bubble collapse," J. Heat Transfer, C87, No. 2 

(1965). 

415 


